Electronic Train Management System and Safety
Larry Milhon
March 9, 2007
Derailment Prevention

Technical Research & Development

- Small Team of Technical People (15)
- Derailment Investigation / Training
- Technical Consulting
- Simulation - Stopping Distance Analysis
- Safety Analysis
Derailment Prevention

Web Based Training

Technical Research & Development

Derailment Info:

INVESTIGATION ASSIST:
 An on-line derailment investigation manual, including a listing of the cause codes.
- Playbook
- List of items to take to a derailment
 Assistance in investigation procedures.
- Measurements:
 See procedures on how to take mechanical (equipment), engineering (track), and operating (transportation) measurements, and see what tools to use to take the measurements.
- Detectors:
 Mech. Detector Map & Data
 Eng. Detector Map & Data
 Ops. Detector Map & Data
 N/C. Detector Map & Data

DERAILMENT STATISTICS:
How is your area doing in reducing derails? See latest stats, 5 year trends, Derailment Map, etc.

CLASSES:
- Derailment Workshop
 See the schedule, and register to attend.

CONTACT LISTS:
- TR&D Contacts
- Transportation Contacts
- Engineering Contacts
- Mechanical Contacts (N/A)

FORMS:
Derailment Prevention

Risk Analysis

Average $ in Derailments By Cause Group

- Main Track Authority
- Flag / Signal
- Environmental
- Rail / Joint Bar Defects
- Axle / Journal
- Wheel Defects
- Track Geometry
- Other Way
- General Switching Rules
- Loading Proc.
- Misc. Other
- Train Handling / Make-Up
- Unusual Ops
- Hwy-Xing

Avg. Derailment Frequency in 5 Years

0 10 20 30 40 50 60 70 80 90 100
ETMS and Safety

ETMS Basics

- Electronic Train Management System
 - Primary purpose is to keep trains from colliding
 - Another important feature is to prevent trains from entering work zones without permission
 - Also prevents trains from over-speeding

- Video
ETMS and Safety

ETMS Background

- Previous Efforts – BNSF Involvement
 - ARES – Advanced Railroad Electronic System
 - PTS – Positive Train Separation
 - NAJPTC – North American Joint Positive Train Control
ETMS and Safety

FRA Approval Process

• Federal Regulation Developed using RSAC
 49 CFR Parts 209, 234, and 236 subpart H

 ➢ First step is to develop an Railroad Safety Program Plan - RSPP
 ➢ Product Safety Plan - PSP
 ➢ System Description and Operation Plans
 ➢ Training / Maintenance Plans
 ➢ Safety Analysis
RSPP

• Railroad Safety Program Plan
 ➢ Design Specification Document for All Processor Based Signal and Train Control Systems
 ➢ Describes Railroad Safety Concepts and Philosophy
 ➢ What Standards Were Used
 ➢ Describes Railroad’s Safety Critical Development Plans
 ➢ RSPP Lays Out the Architecture of the PSP
ETMS and Safety

RSPP

Severity
I. Catastrophic
II. Critical
III. Marginal
IV. Negligible

Probability
A. Frequent
B. Probable
C. Occasional
D. Remote
E. Improbable
ETMS and Safety

PSP

• Product Safety Plan
 ➢ Detailed Description of the Proposed System
 ➢ Description of Railroad Operations using this System
 ➢ Description of Sub-systems
 ➢ Description of the Safety Aspects of System
 ➢ System Architecture
 ➢ Hazard Log
ETMS and Safety

PSP

• Product Safety Plan (cont.)
 ➢ Comparison of Risk – Existing to Proposed MTTHE
 ➢ Description of Methodologies Used for Safety Analysis
 ➢ Preliminary Hazard Analysis – PHA
 ➢ Functional Fault Tree - FFT
 ➢ Sub-System Hazard Analysis – SSHA
 ➢ Verification / Validation Processes
 ➢ Human Factors Analysis
ETMS and Safety

PSP

• Product Safety Plan (cont.)
 ➢ Training of Operators and Maintainers
 ➢ System Operations and Maintenance Manual
 ➢ Test Procedures
 ➢ Post Implementation Monitoring
ETMS and Safety

ETMS Onboard Screenshot - ConOps

MILEPOST: 17.4
STOPPING DIST: 4210 ft
WARNING DIST: 1.4 mi
MAX SPEED 60 mph

WARRANT
MP 19.8 to 27.1
NEXT TARGET: MON SWITCH
DIST TO: 4589 ft
ETMS and Safety

ETMS Safety Analysis - PHA

<table>
<thead>
<tr>
<th>ID</th>
<th>Function</th>
<th>Hazard/Failure Modes</th>
<th>Consequence</th>
<th>Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETMS01.01</td>
<td>Warn Train Approaching Unacknowledged Work Zone</td>
<td>Failure to Warn of Impending Unacknowledged Work Zone</td>
<td>None (Crew Controls Train) Enforcement w/o Warning * Collision w/ Work Gang **</td>
<td>None Negligible Catastrophic</td>
</tr>
<tr>
<td>ETMS01.02</td>
<td>Warn Train Approaching Unacknowledged Work Zone</td>
<td>Early Warning of Unacknowledged Work Zone (>75 sec)</td>
<td>Increased Work Load</td>
<td>Negligible</td>
</tr>
<tr>
<td>ETMS01.03</td>
<td>Warn Train Approaching Unacknowledged Work Zone</td>
<td>Late Warning of Unacknowledged Work Zone (<75 sec)</td>
<td>None (Crew Controls Train) Crew unable to properly set-up train Collision w/ Work Gang **</td>
<td>None Negligible Catastrophic</td>
</tr>
<tr>
<td>ETMS01.04</td>
<td>Warn Train Approaching Unacknowledged Work Zone</td>
<td>Visual Warning of Unacknowledged Work Zone without Audible Warning</td>
<td>None (Crew Controls Train) Crew misses warning - Enforcement w/o Warning Collision w/ Work Gang **</td>
<td>None Negligible Catastrophic</td>
</tr>
<tr>
<td>ETMS01.05</td>
<td>Warn Train Approaching Unacknowledged Work Zone</td>
<td>Audible Warning of Unacknowledged Work Zone without Visual Warning</td>
<td>Increases Work Load – Reason for Warning unknown to Crew</td>
<td>Negligible</td>
</tr>
</tbody>
</table>
ETMS and Safety

ETMS Safety Analysis - PHA

<table>
<thead>
<tr>
<th>Event</th>
<th>Description</th>
<th>Failure Rate (failures/hr)</th>
<th>Yearly Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>BROKEN_RAIL</td>
<td>Broken Rail Occurs</td>
<td>7.4E-4</td>
<td>6000</td>
</tr>
<tr>
<td>DISPATCH01</td>
<td>Dispatch misreads Authority Data to Crew</td>
<td>3.73E-4</td>
<td>30</td>
</tr>
<tr>
<td>DISPATCH02</td>
<td>Dispatch Supplies Erroneous Form B Data to Crew</td>
<td>6.22E-7</td>
<td>5</td>
</tr>
<tr>
<td>DISPATCH03</td>
<td>Dispatch misreads Speed Restriction Data to Crew - ETMS Data Correct-</td>
<td>1.24E-5</td>
<td>100</td>
</tr>
<tr>
<td>HF001</td>
<td>Crew Fails to Adhere to Existing Operating Rules</td>
<td>1.24E-3</td>
<td>10000</td>
</tr>
<tr>
<td>HF002</td>
<td>Crew Incapacitated or Inattentive</td>
<td>1.24E-4</td>
<td>1000</td>
</tr>
</tbody>
</table>
ETMS and Safety

ETMS Safety Analysis – Functional Fault Tree
ETMS and Safety

ETMS Safety Analysis – Functional Fault Tree

- Train to Train Collision
 - XTRAIN2TRAIN: 2.20E-04

- Train Exceeds its Authority
 - XRR045: 1.56E-05
 - Page 3

- Misaligned Switch
 - Page 16
 - XRR054: 9.93E-07

- Train passes over an Unsafe, Unmonitored Switch
 - XRR100: 7.47E-07

- Train passes over an Unsafe, Monitored Switch
 - XRR101: 2.46E-07
ETMS and Safety

ETMS Safety Analysis - Comparison

<table>
<thead>
<tr>
<th>Hazard</th>
<th>Analysis</th>
<th>Failure Rate (failures/hr)</th>
<th>Events Per Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collision Train Exceeds Authority</td>
<td>Existing</td>
<td>1.56E-5</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>ETMS</td>
<td>4.39E-8</td>
<td>.353</td>
</tr>
<tr>
<td>Collision Passes over Unsafe, Monitored Switch</td>
<td>Existing</td>
<td>2.46E-7</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>ETMS</td>
<td>2.69E-11</td>
<td>0.0002</td>
</tr>
<tr>
<td>Collision Passes over Unsafe, Unmonitored Switch</td>
<td>Existing</td>
<td>7.47E-7</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>ETMS</td>
<td>2.69E-11</td>
<td>0.0002</td>
</tr>
<tr>
<td>Collision Train Enters Work Zone w/o Permission</td>
<td>Existing</td>
<td>1.24E-5</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>ETMS</td>
<td>5.70E-8</td>
<td>.458</td>
</tr>
</tbody>
</table>
ETMS and Safety

ETMS Safety Analysis - Reliance

1. Improper Use of ETMS Information
2. Improper Use of ETMS Functions
 - Training of Operators
 - Operations Testing
 - Post Implementation Monitoring
ETMS and Safety

Derailment Prevention Through Technology

ETMS Improves Safety

- Prevents Train-to-Train Collisions
- Prevents Work Zone Incursions
- Prevents Overspeed Derailments
- Provides Platform for Future Development